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TO THE MEMORY OF H. WERNER

We consider the problem of finding optimal generalized polynomials of minimal
L, norm (1< p<w). As an application of our results we obtain Gaussian
quadrature formulas for extended Tchebycheff systems. © 1989 Academic Press, Inc.

1. INTRODUCTION

The problem of finding the element of minimal L, norm (1<p <o) from
a family of generalized polynomials is considered where the multiplicities of
the zeros are specified. The zeros themselves are permitted individually to
be either fixed or variable. The existence and uniqueness of the “minimal
element” is demonstrated. The L, case was studied in [4,5] In our
approach we develop a concise induction process and create a norm
improvement technique while separating multiple zeros to dispose of the
uniqueness and existence questions. We also note that the existence and
uniqueness is routine in the simple zero case, but it becomes a quite
difficult problem in the case of multiple zeros because of the non-linearity.

* This work was done while B. D. Bojanov was visiting the University of Oregon.
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As an application of our results we obtain Gaussian quadrature formulas
for extended Tchebycheff systems.

Because of the factorization properties of polynomials it was well known
how to prove the existence and uniqueness of Gaussian quadrature for-
mulas for polynomials via a variational principle. However, it was no clear
how to generalize these results to extended Tchebycheff systems. See the
interesting discussion in the introduction to [7]. To overcome these
difficulties S.Karlin and A.Pinkus in [7] proved the existence and
uniqueness of Gaussian quadrature formulas for extended complete
Tchebycheff systems but they did not use a variational principle. D. Barrow
[2] then gave a very elegant proof of these results for extended
Tchebycheff systems again not using this technique. Furthermore, in [8],
S. Karlin and A. Pinkus showed the existence of Gaussian quadrature for-
mulas via this principle (see [5] also). We obtain the results entirely via a
variational principle. Although the factorization properties of polynomials
were not available, we feel our method of proof is no more intricate than
the standard proof for polynomials.

II. EXISTENCE OF A MINIMAL SOLUTION

Let {u;}¥*'< C"[a, b] with [0, 1] =(a, b) be a given set of functions

with the property that
{u;}X | forms an “extended Tchebycheff system” for K=N—1, N, N+ 1.
(1)

Without loss of generality we may assume that

det{u,(1,), £,}>0 (K=N—-1,N,N+1) (2)

H

for each choice of the points, (£,)X ,, where a<t, < .- <tx<b. Here we
adopt the usual convention that if

tj71<tj=tj+l= oo =tj+l9
then the (j+ A)th column in the matrix (2) is interpreted as
u(1)), .., uP(2)).

For 1= (7, .., Ty} € RY, we denote by u(T; 1) the unique polynomial of the
type

N
U=uy,  + Y, o

i=1
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with real coefficients {«,} such that

u(t)=0, k=1,.,N, (3)

where a “multiple t,” is interpreted as a zero of u with the corresponding
multiplicity. (If the value of the kth component of 7 is taken on v times by
the components of T we say “r, has multiplicity v.”)

We are given the multiplicities {v,}7_,, {u}r_, such that
Dk Ve 2P =N and the points

E= (&, E) where a<&é < --- <&, <b
Set 4,={X=(xy, . Xx,):0<x; <x,< --- <x,<1} and for each i=
(X1, X,) €4, let T=7(%, £)e R" be of the form

(x é)_('xla' x19x25 x25x39'"’xn715xn9"'9 xna
vw B i g

v1 v2 Vn

55 561’52,-5525637"'56 7155ma~9§ )

!l uz #

Then if
1.6 = [ ez, £ 01

where 1 < p < oo, we seek the ¥* e 4, with the property

I(x*, &) := min I(%, {) 4)

Xed,

and we refer to it as the

(xl, ey Xy
Vis o Yy

LEMMA 1. For Xxed, and k=1, .., n the function

&y
His oes By

) problem. {5)

0 ,
Uk(t):'a_xk u(t(x, £); 1)

belongs to the linear span of {u;}¥_ | =:<uy, ., uy) and

sgn v, (t) = sgn u(T(%, &); ¢) sgnlx, — 1) ae. in {0,1] (6}

v,{(t) has the same zeros including multiplicities as w(7(%, &); ¢)
except at x, where the multiplicity is one less. (7}
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Proof. Let T=1(x, £). Since u(7; t) has leading coefficient one, we find
vy € {uy, .., uy . It is easy to check that u(f; -) can be written in the form

uleg, Tj] ud?) -1

wE=det | j=1,., N |i=1,.,N+1 [det wltn -5 17 g
. iLj=1.,N
i=1,.,N+1

where u;[1,, .., 7;] is the (j— 1)st order divided difference of u; with respect
to the nodes {7,,..,7,}. A straightforward computation reveals that v,
satisfies (6) and (7). (For a similar computation see [1]; in particular

(6)-(11).)

Remark 1. Let v, (t)=cyty+ --- +c u,. Then using the data at the
zeros of v, and any ¢ >max 1,, (2) and Cramer’s rule imply

SgN ¢y = SgN v,(1). 9)

Set ¢, =v,(t)/cy. By the same reasoning that was employed in Lemma 1,
we find 8, :=(0/0x,) D,(¢t) € {uy, ..., uy_,» and it has the features:

If 7, has multiplicity v, > 1, then &, has the same zeros including mul-
tiplicities as u(7(x, £); ¢) except at x, where the multiplicity is two less,

ﬁkkEO if Vk=1;

sgn D) =sgn 6,(¢) sgn(x, —t) ae.onf0,1]ifv,>1. (10)

Combining (6), (9), and (10) we obtain

sgn ¢y 0 (2) = sgn u(3(%, £); 1) ae.on[0,1]forv,> 1. (11)

THEOREM 1. Let 1 < p<oo. Then there is an X* € A, which satisfies (4).
Further any such minimizing x* = (x¥, ..., x}) is in the interior of 4, (written
intd,), ie, 0<x¥< ... <x}<l

Proof. From the representation (8), it is clear that I(X, £) is a con-
tinuous function of X over 4,, a compact set in R". Thus there exists a
minimizing x*eA4,. We first show that O0<xf< --- €x¥<1. Say for
example that 0= x{. Let x} appear ¥, times as a component of X* where
O=x¥< - <x¥<1 and X/_,¥,=37_,v, The so-called normal
equations are

DI(zH, E !
0<M=pf P~ sgnu)o, dt (j=1,..10) (12)
ax;;‘ 0 4
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with equality for j>1 where u(z) :=u(7(x*, £); ¢) and Ou/dx¥=v,. A con-

sequence of (6) is that (sgn u)v;, <0 a.e. on [0, 1]. Thus
1
[ a1~ (sgn wy v, ar <o,
0

contradicting (12). Thus x¥ e (0, 1).

We next show that x* lies in the interior of 4,,. To avoid some cumber-
some notation we assume that n =2 and that all the components of x* are
equal to x3¥. The mathematics in the more general case would remain the

same. Let ¢;,=x¥ +\/§06,-, i=1,..,v:=v,+v, where

and set
F(s,)y=u(ty, .y Ty, &1y oos Envyi B

We will establish in this case that

0F(s, t) 1/1 1 1 0*u e
Ll I,
35 .o 2<v1+v2>v(v—1)ax;*2“(x - 8)
ow . .
+C$§,;(T(x*,~f);f)

for some constant ¢. Hence since F(0, 1) = u(i(x*, £); ¢)

2 ,
&UO \F(s, )] dtl:o

1 0
= p | 1F0, 017~ (sgn F(O, 1)) 52 F(5, O] 41 <0

by (11) and (12) showing that I(x*, £) is not a minimum.

(13}

(14)

To establish (13) we first expand F(s, ¢} in a Taylor’s series about s =0,

Fs, ) =u(@*, )+ 3 Qf‘%@ a.\/s

i -

T=1%

1 & & 2%t r)
+§Z 2 0t, 0,

i=1 j=1

A, 5+ O(s7),

T=7*

where T* = 7(x*, £).

640/56/1-7



96 BARRAR, BOJANOV, AND LOEB

Since u(ty, ..., Ty, £y -y Ex_y) 1S sSymmetric in the t’s, the terms in the
above expression involving \/E vanish; moreover we find

0 L/1 1\/0%u(z;t)
b )t

Vi V2

_ o*u(T; 1)
sem 01,01,

f:f*>. (15)

Next setting 7,=x¥+w, i=1, ..., v, it follows that

Eu(‘cl, cary ‘Cv, 61, Ty éN—v; t)lw=0

_Qu(E(x*, &) 1) , U@
- Ox¥ T o

(16)

T=71*

2

Wu(‘rb T 51’ ey EN—V’. t)|w=0

_ ot u(t(x*, &); t) o*u(t; 1) O*u(t; t)
- Ox}? —-[V ot} Hlv=1) ot, 01, :L:T-*' (17)

Considering t,, .., 7, distinct at first and then letting them tend to x}
yields,
ou(t, t)
0T,

=cNﬁ1(T2a ey Ty 515 vy fN—v; t)

and hence

ulf; 1) dcy .
5‘52 2?01(123--'3 Tys 517---5 iN—u;tL
1 1

where as noted #; does not depend on 1,.

Thus both 0u(%; ¢)/0r, and 0%u(3;t)/01? are scalar multiples of
ou(t(x*, &); 1)/0x} since they all have the same set of zeros including mul-
tiplicities, which are N —1 in number. Hence it follows from this and (15),
(16), (17) that (13) is valid.

ITI. UNIQUENESS OF THE SOLUTION
For the problem defined in (5) we will show that the solution to the
normal equations is unique; that is, there exists exactly one X in the interior
of 4, such that
1 _ _ .
fulm &= [ I &0 uE ED o Edt=0  (k=1,.,n). (18)
4]

(See (12) for p=1.)
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Combining this with the results of Theorem 1 will show that there is
exactly one solution to the minimization problem in 4, and this solution is
inint4,.

Let J=J(x, &) be the Jacobian matrix of X, a solution to (18) with
xeint 4,, ie,

_ O - f)

J = .
O(X1, s Xn)

LEMMA 2. DetJ>0,

e 0 (4
a;—-é—x—jjo |1 sgn uv, dt

1 1. E
=(p=1) | lul? o0y det [ i~ sgnuvg dict o sgnul,

where vy, = 0v,/0x; and if p=1, |u|?~?=0.

Proof. 1t is easy to see that v,, € (uy, ..., uy . Note further that for p>1
lu(xF)|? ' =0. Thus if ¥ satisfies (18):

;af;%=(p__.1)fﬁ|u|f'*2ukujdt, for k#jifp>1, (19)
axj 0

Py for k#jifp=1. (20)
Ox;

In the case where k= j we find

W & ~
_fzzz(p_l)j jul? 2o Y di+ | ul?Pung de for p>1 (21)
6xk : 0
0 i Lel
£=f sgnuukkdtchj sgn uv,, dt >0
0x, Jo 0
if p=1andv,>1(note (11)} (22}
P 1
£=I sgnuv, dt + 2v.(x,) sgn u(x; )
5xk G
1
= CNI sgn uv,, dt + 2v,(x;) sgn u(x; )
0
> 205(xz) sgn ul(x; ) >0 (23)

for p=1 and v,=1 (note (6) and (11)). Combining (19)-(23) yicids the
result. §
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In the next resuit we foliow [4].

THEOREM 2. For each nym=0 so that n+m<N, there is a unique
solution X* € A, to the (%, &) problem cited in (5). Furthermore X*cint 4,,.

Proof. According to our previous remarks it suffices to show that (18)
has at most one solution. For n=1 the result follows from (23). Let us
assume the result is valid for » —1 and all m. Hence for each & e (a, b) the

problem
(xl, s Xy g
Vi s Vi1

has only one solution: 0<x;({)<x,(¢)< -+ <x,_,({)<1. By the uni-
queness dnd the contmmty of Bq. (18),: xn; (&) is a continuous function of
¢ and hence there is a &, € (0, 1) SO that 61 = x,, 1(6 ) Agam by induction,
the problem : R TR T

PESEIRAP STV B I 3
é ,‘:m : ) Tt N (25)
Hiy Sy Hm o o

(24)

615 ey éma i >
Hisoos Upps Vy

SOV B S VS 1 ,.( ~3€1,1 "'":x';1429‘x" ;1\
Vis oy Vi 2y vn'—:tl’;*_‘vn

has ‘only one’ solution Noté that if there were tv&d fixed 1p0i:‘nitls £, and &,,
according to (18) each would satisfy the normal equatlons for ‘problem’
(24)"; ie,,

fk(xl(éi)a il xn—l(éi); 519"-’ émyé)zo ) k=1 ’ 1 l_l 2 .

R

It is easy to see that both (xl(fy) s Xy 1(51)) and (x1(fz) a?cnﬁl(fZ))
satisfy the normal equations -corresponding; to “problem (25).”But since
Xy (€D #x,_(£,), we have a contradiction of the unicity of (25) Thus

&, is unique and ¢ > ¢, =X, 1(5)<€ For each 5>51, (x1(f)>- # % (&)
satisfies the equations G L

Jex1(&)y ey X _1(E): Eis i, Ey=0icsr (b= by, n— 1)

which is equivalent to

SO s B (€ 6 s E) =0 (k= Lo,n=1).  (26)
We know by Theorem 1 ‘that thefe'is a6 > ¢, so'that R
o (&) = Su(X1(E)y s Xu 18N & i i) =00 -

We clalm thiere is’ exagtly: ane such & Consider any-¢:> &; with the property
e(&)= R
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Differentiating,

0'(&)= 2 % +‘;—‘§ @7)

Further, (27) and an application of the implicit function theorem to (26)
yield the # linear equations

nfla _A
Y L@ —e(e) ="

j=laxj / PR
n—1 6]; , _'_af; a
Eﬁi}x’(é)_—a? (i=1,.,n—1)

in the n unknowns (x}(&), ..., x,_ (&), ©'(£)). Solving for ¢'(£)} and using
Lemma 2

61—t (Wt 1) g (W n~1>>]-1>0_

a(xla-"9 xn——laé) a(xia-"v xn—l)

Thus there is exactly one solution and the induction has been advanced. §

Remark. In the case when p=1 and the v, and y, are all even integers
we have

1. 8)=[ us, & 1) de
and from our results there is a unique X* eint 4, with the properties:
1 Ju
— | 22 (% £ - \
O‘L G FhEnd =l (28)

It is easy to show using (28) [7] that there is a unique divided difference
quadrature formula of the form

m -1 m 2 j+1
Q)= Y Y ayfT&r, o Eis Enyom v s Epy o &1
l 1,:*(;.“2 M Hm /«3/—\;\ J+t
+ Y Dy fLC s s S1s s Eoms oo Cps Xl ety X gy iy Xpy vy X1,
i=1 j=0
(29)

where ¥ = (xy, .., x,)eint 4, and {a;, b;} = R so that

1
Q) =[ w(di,  i=1,.. N
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Further the “unique X” is X¥*. This result was recently obtained by D. L.
Johnson [6] and Bojanov et al. [5] by other methods. If &€ (a, 5)\(0, 1),
the condition that the u, are even can be eliminated.
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